LLM alignment is the process of steering Large Language Models to operate in a manner consistent with intended human goals, preferences, and ethical principles. Its primary objective is to make LLMs helpful, honest, and harmless, ensuring their outputs align with specific values and are advantageous to users. This critical process prevents unintended or harmful outputs, mitigates issues like specification gaming and reward hacking, addresses biases and falsehoods, and manages the complexity of these powerful AI systems. Alignment is vital to transform unpredictable models into reliable, trustworthy, and beneficial tools, especially as AI capabilities advance.
Podden och tillhörande omslagsbild på den här sidan tillhör
AI-Talk. Innehållet i podden är skapat av AI-Talk och inte av,
eller tillsammans med, Poddtoppen.