Andrew Gelman and Aki Vehtari wrote a paper titled, "What are the most important statistical ideas of the past 50 years?". The first idea in the list is "counterfactual causal inference". Eric Daza (Evidation Health) walks us through the main ideas of the Gelman & Vehtari paper, drawing examples from several fields, including medical & healthcare statistics.
Topics
0:00 - Coming up...Correlation vs Causation
1:20 - Most important statistical ideas over the last 50 years
6:10 - Counterfactual Causal Inference
9:40 - Assumptions Change between Applied Domains
21:10 - Propensity Score Methods
25:15 - Transportability of Scientific Results
26:30 - People don't want generalizable results
32:00 - Generic Computation Algorithms
37:00 - Reweighting
43:57 - Matching Methods
58:20 - Medical Data is Higher Dimensional that we think.
Podden och tillhörande omslagsbild på den här sidan tillhör
Glen Wright Colopy. Innehållet i podden är skapat av Glen Wright Colopy och inte av,
eller tillsammans med, Poddtoppen.