This research paper introduces a novel two-stage framework for more accurately identifying lung tumors in CT scans. The approach first performs a coarse, full-volume localization of potential tumors, followed by an anatomy-aware post-processing step to refine these regions. Subsequently, a second stage focuses on detailed segmentation of the identified regions of interest, utilizing uncertainty information to improve accuracy, especially in challenging areas. The study demonstrates that this uncertainty-guided, coarse-to-fine method, combined with anatomical knowledge, leads to better tumor delineation and reduces false positives compared to traditional methods.

Podden och tillhörande omslagsbild pÄ den hÀr sidan tillhör Neural Intelligence Network. InnehÄllet i podden Àr skapat av Neural Intelligence Network och inte av, eller tillsammans med, Poddtoppen.

Neural intel Pod

Uncertainty-Guided Lung Tumor Segmentation via Coarse-to-Fine Refinement

00:00