00:00 10 Sora and Gemini 1.5 follow-ups: code-base in context, deepfakes, pixel-peeping, inference costs, and more 00:46 1. Deepfake detection of Sora 01:59 2. Playing with long-context, problem settings, and prompting 03:39 3. Gemini paper snooping: contamination and citation games 05:42 4. Training data and token estimates of YouTube 07:42 5. Unlocking model-based RL and downstream research 08:52 6. Midjourney style matching, V-JEPA, replicating Sora in the open 10:09 7. Architectures and academic links 10:57 8. Pixel peeping from the arts 11:58 9. Inference costs 13:24 10. Pressure on Llama and Mistral 14:03 11. Sound effects, physics, and the complete picture
Podden och tillhörande omslagsbild på den här sidan tillhör
Nathan Lambert. Innehållet i podden är skapat av Nathan Lambert och inte av,
eller tillsammans med, Poddtoppen.