Potential for fault tolerance and automatic error correction
Quantum Chemistry Application
Goal: leverage classical chemistry knowledge and identify problems hard for classical computers
Collaboration with quantum chemists Anna Krylov (USC) and Martin Head-Gordon (UC Berkeley)
Focused on effective input-output between classical and quantum computers
Simulating a biochemical catalyst molecule with high spin correlation using a combination of analog time evolution and logical gates
Demonstrating higher fidelity simulation at low energy scales compared to classical methods
Future Directions
Exploring fault-tolerant and robust approaches as an alternative to full error correction
Optimizing pulses tailored for specific quantum chemistry calculations
Investigating dynamics of chemical reactions
Calculating potential energy surfaces for molecules
Implementing multi-qubit analog ideas on the Rydberg atom array machine at Harvard
Dr. Yelin's work combines the strengths of analog quantum systems and avoids some limitations of purely digital approaches, aiming to advance quantum chemistry simulations beyond current classical capabilities.
Podden och tillhörande omslagsbild på den här sidan tillhör Sebastian Hassinger & Kevin Rowney. Innehållet i podden är skapat av Sebastian Hassinger & Kevin Rowney och inte av, eller tillsammans med, Poddtoppen.